
Generative Factor Chaining: Coordinated
Manipulation with Diffusion-based Factor Graph

Utkarsh A. Mishra, Yongxin Chen, Danfei Xu
Georgia Institute of Technology

{umishra31, yongchen, danfei}@gatech.edu

Abstract: Learning to plan for multi-step, multi-manipulator tasks is notoriously
difficult because of the large search space and the complex constraint satisfaction
problems. We present Generative Factor Chaining (GFC), a composable genera-
tive model for planning. GFC represents a planning problem as a spatial-temporal
factor graph, where nodes represent objects and robots in the scene, spatial factors
capture the distributions of valid relationships among nodes, and temporal factors
represent the distributions of skill transitions. Each factor is implemented as a
modular diffusion model, which are composed during inference to generate feasi-
ble long-horizon plans through bi-directional message passing. We show that GFC
can solve complex bimanual manipulation tasks and exhibits strong generalization
to unseen planning tasks with novel combinations of objects and constraints. More
details can be found at: generative-fc.github.io

Keywords: Manipulation Planning, Bimanual Manipulation, Generative Models

1 Introduction

Solving real-world sequential manipulation tasks requires reasoning about sequential dependencies
among manipulation steps. For example, a robot needs to grip the center or the tail of a hammer,
instead of its head, in order to subsequently hammer a nail. The complexity of planning problems
increases when multiple manipulators are involved, where spatial coordination constraints among
manipulators need to be satisfied. In the example shown in Figure 1, the robot has to reason about
the optimal pose to grasp the hammer with the left arm, such that the right arm can coordinate to
re-grasp. Subsequently, the two arms must coordinate to hammer the nail. While classical Task
and Motion Planning (TAMP) methods have shown to be effective at solving such problems by
hierarchical decomposition [1], they require accurate system state and kinodynamic model. Further,
searching in such a large solution space to satisfy numerous constraints poses a severe scalability
challenge. In this work, we aim to develop a learning-based planning framework to tackle complex
manipulation tasks with both sequential and spatial coordination constraints.

To solve complex sequential manipulation problems, prior learning-to-plan methods have largely
adopted the options framework and modeled the preconditions and effect of the options or primitive
skills [2, 3, 4, 5, 6, 7]. Key to their successes are skill chaining functions that determine whether
executing a skill can satisfy the precondition of the next skill in the plan, and eventually the success
condition of the overall task. However, the use of vectorized states and the assumption of a linear
chain of sequential dependencies limits the expressiveness of these methods. Consider a task where
a robot fetches two items from a box. Intuitively, the skills for fetching one object should not
influence the other. However, due to vectorized states and the linear dependency assumption, the
skill-chaining methods are forced to model such sequential dependencies. Similarly, a skill intended
to satisfy a future skill’s condition will be forced to influence the steps in between. Finally, the skill
chain representation forbids these methods from effectively modeling multiple-arm manipulation
tasks, where concurrent skills must be planned to jointly satisfy a constraint.

8th Conference on Robot Learning (CoRL 2024), Munich, Germany.

https://generative-fc.github.io/

	𝐿!

	𝐻!

	𝑅!

	𝐵!

Left Arm

Hammer

Right Arm

Box

Grasped

	𝐿"

	𝐻"

	𝑅"

	𝐵!

Grasped

Grasped

	𝐿"

	𝐻#

	𝑅#

	𝐵"𝑎#

𝑎"

𝑎$

	𝐿!

	𝐻!

	𝐿!

	𝐻!

	𝐿"

	𝐻"𝑎"

	𝐿!

	𝐻!

	𝑅!

	𝐵!

	𝐿"

	𝐻"

	𝑅"

	𝐵!𝑎#

𝑎"

A

B

C

Inside
Input

Generative
Factor

Chaining

Symbolic-
Geometric

Plan
Solution

Gaussian
Prior

Diffusion-
based
Factor
Graph

Distribution
Composition

Samples
drawn from
composed

distributions

Figure 1: Factor graph for a multi-arm coordination task. Our factor graph-based planning
formulation solves for a sequence of spatial factor graphs from the initial state to a goal factor by
chaining them using temporal skill factors. The figure illustrates the temporal evolution of a factor
graph by executing single or multiple skills sequentially or in-parallel to handover a hammer, pick
up a nail, and coordinate both arms to strike the nail. Task: The task objective is to place the ham-
mer inside the box. However, since the left arm cannot reach the box, the hammer is handed over to
the right arm such that the right arm can complete the task. (a) Inputs: The initial scene and a sym-
bolically feasible spatial-temporal factor graph plan to complete the goal objective. (b) GFC: We
formulate all factors as distributions of the nodes connected to them. GFC represents spatial factors
as classifiers and temporal factors as diffusion models. We leverage compositionality of diffusion
models to compose spatial-temporal distributions and find the joint distribution of the complete plan
directly at inference. Finally, samples drawn from such a joint distribution are symbolically and
geometrically feasible solutions of the whole plan. (c) Output: A sequence of skill choices and
optimizer continuous parameters executed on robots with parameterized skill controllers.

To move beyond the linear chain and model complex coordinated manipulation, we introduce Gener-
ative Factor Chaining (GFC), a learning-to-plan framework built on flexible composable generative
models. For a given symbolically feasible plan graph, GFC adopts a spatial-temporal factor graph [8]
representation, where nodes are objects and robot states, and spatial factors represent the relationship
constraints between these nodes. Skills are temporal factors that connect these state-factor graphs
via transition distributions. A single skill factor can simultaneously connect to multiple object and

2

robot nodes, allowing for natural representation of complex multi-object interactions and steps that
necessitate coordination between multiple manipulators. During inference, this factor graph can
be treated as a probabilistic graphical model, where the learned skill factor and spatial constraint
factor distributions are composed to form a joint distribution of complete plans. Through 13 long-
horizon manipulation tasks in simulation and the real world, we show that GFC can solve complex
bimanual manipulation tasks and exhibits strong generalization to unseen planning tasks with novel
combinations of objects and constraints.

2 Related Work

Task and Motion Planning (TAMP). TAMP frameworks decompose a complex planning problem
into constraint satisfaction problems at task and motion levels [9, 2, 10, 11, 12]. Notably, Garret et
al. [1] drew connections between TAMP and factor graphs [8], representing constraints as factors
and objects/robots as nodes. This formalism naturally allows reusing per-constraint solvers across
tasks. However, classical TAMP approaches often rely on accurate perception and system dynamics,
limiting their practical applications and scalability. We instead opt for a learning approach, while our
compositional factor graph representation remains heavily inspired by the classical TAMP paradigm.

Generative models for planning. Modern generative models have been applied to offline imita-
tion [13, 14, 15, 16, 17, 18, 19, 20] and reinforcement learning [21, 22]. In addition to modeling
complex state and action distributions, generative models have also been shown to encourage com-
positional generalization [23, 6, 24] by combining data across tasks [22, 21]. Most relevant to us are
Generative Skill Chaining (GSC) [6] and Diffusion-CCSP [25], both designed to achieve system-
atic compositional generalization. GSC composes skill chains through a guided diffusion process.
However, similar to other skill-chaining methods [4, 5], GSC cannot model non-linear dependencies
such as parallel skills and independence among skills. Diffusion-CCSP trains diffusion models to
generate object configurations to satisfy spatial constraints, while relying on external solvers to plan
the manipulation sequence. Our method is a unified framework to solve the combined problem: it
generates skill plans to satisfy both spatial and temporal constraints represented in a factor graph.

Learning for coordinated manipulation. Coordinating two or more arms for manipulation
presents numerous planning challenges [26, 27, 28], including the combinatorial search space
complex constraints for coordinated motion. Recent works have utilized learning-based frame-
works [29, 30, 31, 32, 33] in both Reinforcement Learning [29, 31] and offline Imitation Learn-
ing [33, 32]. However, most existing works have focused on learning task-specific policies [29, 32]
or require multi-arm demonstration data collected through a specialized teleoperation device [33].
In contrast, our factor graph-based representation enables solving multi-arm tasks by composing
multiple single-arm skills through inference-time optimization.

3 Background

Diffusion Models. A core component of our method is based on distributions learned using diffusion
models. A diffusion model learns an unknown distribution p(x(0)) from its samples by approximat-
ing the score function ∇ log p. It consists of two processes: a forward diffusion or noising process
that progressively injects noise and a reverse diffusion or denoising process that iteratively removes
noise to recover clean data. The forward process simply adds Gaussian noise ϵ to clean data as
x(t) = x(0) + σtϵ for a monotonically increasing σt. The reverse process relies on the score func-
tion ∇x log pt(x(t)) where pt is the distribution of noised data x(t). In practice, the unknown score
function is estimated using a neural network ϵϕ(x(t), t) by minimizing the denoising score match-
ing [34] objective Et,ϵ,x(0) [λ(t)∥ϵ − ϵϕ(x(t), t)∥2] where λ(t) is a time-dependent weight. Several
recent works have explored the advantages of diffusion models like scalability [35, 36, 37, 38] and
the ability to learn multi-modal distributions [39, 40, 41, 22]. We are particularly interested in the
compositional ability [23, 13, 24, 25, 6] of these models for the proposed method.

3

Problem setup. We assume access to a library of parameterized skills [42] π ∼ Π such as primitive
actions like Pick and Place. Each skill π requires a pre-condition to be fulfilled and is parame-
terized by a continuous parameter a ∈ Aπ governing the desired motion while executing the skill
in a state s. For a given symbolically feasible task plan from a starting state s0 to reach a specified
goal condition sgoal, generated by a task planner or given by an oracle, the problem is to obtain
the sequence of continuous parameters to make the plan geometrically feasible. For example, given
a nail at a target location and a hammer on a table, the symbolic plan is to Pick the hammer and
Reach the nail. A geometrically-feasible plan requires suitable Pick and Reach parameters such
that the hammer’s head can strike the nail.

Learning for skill chaining. Existing works along this direction model the planning problem as
a “chaining” problem: They first model the pre-conditions and effect state distributions for every
skill π ∼ Π from the available data and a symbolic plan skeleton ΦK = {π1, π2, ..., πK} consisting
of K-skills is constructed. With this model, they search for the given skill sequence (plan) such
that each skill satisfies the pre-conditions of the next skill in the plan. STAP [5] used learned pri-
ors to perform data-driven optimization with the cross-entropy maximization method. In GSC [6],
the policy and transition model is formulated as a diffusion model based distribution pπ(s, aπ, s

′)
which allows for flexible chaining. While the forward chain ensures dynamics consistency in the
plan, backward chain ensures that the goal is reachable from the intermediate states. For a forward
rollout trajectory τ = {s0, aπ1

, s1, aπ2
, sgoal} associated with skeleton Φ2 = {π1, π2}, the resulting

forward-backward combination based on GSC [6] can be represented as

pτ (τ |s0, sgoal) ∝
pπ1(s0, aπ1 , s1)pπ2(s1, aπ2 , sgoal)√

pπ1
(s1)pπ2

(s1)
(1)

4 Method

We aim to solve unseen long-horizon planning problems by exploiting the inter-dependencies be-
tween the objects important for the task at hand in the scene. Our method adopts factor graphs
to represent states and realize their temporal evolution by the application of skills. While previ-
ous works have considered vectorized state representations making it difficult to decouple spatial-
independence, we focus on factorized state representations such that the state of the environment is
entirely modular, containing information about all the objects in the scenario and the task-specific
constraints between them. We use a spatial-temporal factor graph [8] that is transformed into a
probabilistic graphical model by representing temporal factors as skill-level transition distributions
and spatial factors as constraint-satisfaction distributions. A composition of all the factors jointly
represents sequential and coordinated manipulation plans directly at inference and can be solved by
sampling optimal node variables using reverse diffusion sampling.

4.1 Representing States, Skills, and Plans in Factor Graphs

States as factor graphs. We define a factor graph {V,F} of a state s consisting of the decision
variable V and factor F nodes. Every robot and object is represented as a decision variable node
v ∈ V containing their respective state. Factors f ∈ F between nodes in a given state are spatial
constraints. For example, a Grasped spatial factor specifies admissible rigid transforms between a
gripper and an object. When we construct a probabilistic graphical model from the representation
described above, an intuitive way of calculating the distribution of a state, p(s), is the composition
of all the factor distributions. Mathematically:

p(s) ∝
∏
f∈F

pf (Sf) where s ≡
⋃
f∈F

Sf (2)

where pf (Sf) represents the joint factor potential of nodes v ∈ Sf ⊆ V , i.e. all nodes involved in a
factor 1 and s is the joint distribution of all such nodes. This indicates that the joint distribution of
all the nodes must satisfy each of the factors, also explored by Diffusion-CCSP [25].

1i.e. a factor f is included iff there is an edge between f and some v ∈ V which also implies v ∈ Sf ⊆ V .

4

Green Cup

Pink Cup

Right Arm

Left Arm

Pot

Right Arm

Left Arm

Figure 2: (Left) Parallel independent chaining The figure shows the execution of two skills (π1

and π2) in-parallel on two independent sets of nodes (L, C and R, M) to modify their ex-
isting factors (Grasped). The two independent executions can be connected via external fac-
tors µ1 (FixedTransform) introducing spatial dependencies between nodes C and M. (Right) Par-
allel dependent chaining The figure shows overlapping nodes of interest while parallel execution of
two skills. The pot is to be picked by using both arms simultaneously. The effect of this is resulting
factors (Grasped) between (L, P and R, P) and external factor µ2 (FixedTransform) between L
and R. Overlapping nodes satisfy both skill’s temporal effects.

Skills as temporal factors. To represent transitions between states, we adapt parameterized
skills [42] for a factor graph formulation. We define the preconditions of a skill as a set of nodes
and factors, thus considering a skill feasible iff the precondition factors are satisfied. For example,
for state s0 illustrated in Figure 1, the nodes of a factor graph are {L0, H0, R0, B0} and the factors
existing in this scene are {Grasped(L0, H0)=True}. Now, since this factor is a precondition of the
skill Move(L0, H0) that moves the hammer in hand to align with the box, it must be satisfied for the
skill to be feasible. The effect of executing a skill creates a new factor graph s′ by changing the state
of the nodes involved and, optionally, adding or removing their factors. This results in a temporal
factor between the transitioned nodes of s and s′ with the continuous action parameter of the skill
aπ . The skill definitions can be extracted from standard PDDL symbolic skill operator with minor
adaptations, following the duality of factor graphs and plan skeletons [1]. Eventually, we solve an
optimization problem: satisfying the Aligned, Grasped, and the transition dynamics constraints by
finding the correct Move parameters aπ1

. Each skill in a plan introduces additional nodes and factors
to the factor graph, with added complexity for optimization.

Mathematically, we can use the distribution p(s) as established in Equation 2 with all the spatial
factors, and represent the temporal skill factor distribution of kth-skill πk as the joint distribution:
pπk

(s, a, s′) ≡ pπk
(Sπk

, a, S′
πk
), Sπk

⊆ Vπk
pre which is executable iff the skill’s pre-condition

sπk
pre ≡ {Vπk

pre,Fπk
pre} is satisfied by the current state i.e. Vπk

pre ⊆ V and Fπk
pre ⊆ F . Once executed,

it leads to the transitioned state S′
πk

. Based on the above formulation of a short-horizon transition
distribution, we extend to construct a plan-level distribution as already established by GSC [6] and
shown in Equation 1. We leverage the modularity of factored states by replacing states s with a set
of decision variables Sπk

in the interest of skill πk. This allows us to chain multiple skills in series
and parallel. In such a scenario, the denominator term exists only for certain decision nodes iff they
are common in two consecutive skills. We can indeed rewrite Equation 1 as:

p(τ) ∝
∏

πk∈Φ pπk
(vk ∈ Vπk

pre, ak, v
′
k ∈ Vπk

effect)√∏
vi∈Vi

pπi−(vi)pπi+
(vi)

(3)

if we consider that some set of intermediate nodes Vi are connected by two sequential skills πi− and
πi+.

Representing coordination. A key advantage of the factor graph representation is the ability to
model multi-arm coordination tasks by connecting the temporal chains of each arm using spatial
constraints. Such tasks often require skills to be simultaneously executed on each arm to operate
on different or the same objects. We consider two cases for parallel skill execution, where multiple
robots are operating on: (1) independent objects and (2) the same object, leading to independent and

5

dependent temporal chains respectively. With our factorized state representation, we can indepen-
dently control the execution of individual skills correlated with the nodes of interest and calculate the
cumulative effect by applying the union of the effects of all the skills to the current factor graph. We
consider a scenario shown in Figure 2 (Left). The left and right gripper arm L0 are holding the pink
C0 and green M0 cup ({Grasped(L0, C0)=True} and {Grasped(R0,M0)=True}) respectively.
While both the grippers can independently execute the skill Move to modify separate factors (fπ1

1

and fπ2
2), one can add a constrained relationship factor (µ1) between the two mugs representing

a set of transforms that satisfy the precondition of Pour. Such an ability to augment constraints
flexibly allows zero-shot coordination planning for unseen tasks at test time even with parallel skill
executions on the same object as shown in Figure 2 (Right).

4.2 Generative Factor Chaining

Now we have a formulation to construct a symbolic spatial-temporal factor graph plan for a task and
chain them using spatial factor and temporal skill factors sequentially or in parallel. To make this
plan geometrically feasible, we must find the optimal node variable values. While classical solvers
require modeling the transition dynamics of complex manipulation tasks, sampling-driven optimiza-
tion with learned models provides less flexibility and modularity [6]. In this work, we leverage the
expressive generative model to capture the transition dynamics and exploit the compositionality of
diffusion models. Given a symbolically feasible factor graph plan, our method, termed Generative
Factor Chaining (GFC), can flexibly compose spatial-temporal factor distributions to sample optimal
node variable values for the complete plan.

Probabilistic model for trajectory plan as spatial-temporal factor graphs. Now, we again con-
sider the spatial graph for representing the state, where the probability of finding a state s is the joint
distribution of all the nodes in the factor graph. We will now integrate the spatial factors with the
temporal factors considering the compensation term introduced in Equation 2 and Equation 3 along
with the constraint factors across the chain µ ∈ M as:

p(τ) ∝
∏

πk∈Φ pπk
(vk ∈ Vπk

pre, ak, vk+1 ∈ Vπk

effect)
∏K

k=0

∏
f∈Fk

pf (Sf)√∏
vi∈Vi

pπi−(vi)pπi+(vi)
ΠMfµ(Sµ) (4)

This completes the joint distribution of all the nodes in the spatial-temporal factor graph plan consid-
ering the temporal factors for all skills with their pre-condition and effect nodes, all spatial factors for
all states in the plan, and all intermediate nodes in the temporal chain. We show our implementation
of this formulation in algorithm 1.

For the sake of simplicity, we will formulate the probabilistic model for the two chains shown in Fig-
ure 2 by following the forward-backward analysis introduced by GSC and discussed in section 3.
We can write the top chain as:

pπ1
(L0, C0, aπ1

, L1, C1)pπ2
(R0,M0, aπ2

, R1,M1)pµ1
(C1,M1) (5)

showing the independence of factors. Similarly, the bottom chain can be constructed based on Equa-
tion 4 as:

pπ1
(L0, P0, aπ1

, L1, P1)pπ2
(R0, P0, aπ2

, R1, P1)√
pπ1

(P1)pπ2
(P1)

pµ2
(L1, R1) (6)

where the factors are dependent on each other. It is worth noting that the augmented constraint
factors pµ work as a weighing function and can be more precisely represented by pµ(Sµ) ≡ pµ(y =
1|Sµ) for some constraint-satisfaction index y.

We align towards diffusion model-based learned distributions to represent the probabilities in the
formulated probabilistic graphical model. We transform the probabilities into their respective score
functions ϵ(x(t), t) for a particular reverse diffusion sampling step t and train it using score matching

6

loss. Hence, for sampling a scene-graph for Equation 4, we have

ϵ(τ (t), t) =
∑
πk∈Φ

ϵπk
(v

(t)
k ∈ Vπk

pre, a
(t)
k , v

(t)
k+1 ∈ Vπk

effect, t) +

K∑
k=0

∑
f∈Fk

ϵf (S(t)
f , t)

−1

2

∑
vi∈Vi

[
ϵπi−(v

(t)
i , t)ϵπi+

(v
(t)
i , t)

]
+

∑
M

ϵfµ(S
(t)
µ , t)

Following this, we can show for the dependent factor chain in Equation 6 as:

ϵ(L
(t)
0 , P

(t)
0 , R

(t)
0 , L

(t)
1 , P

(t)
1 , R

(t)
1 , t) = ϵπ1

(L
(t)
0 , P

(t)
0 , a(t)π1

, L
(t)
1 , P

(t)
1 , t)+

ϵπ2(R
(t)
0 , P

(t)
0 , a(t)π2

R
(t)
1 , P

(t)
1 , t)− 1

2
ϵπ1(P

(t)
1 , t)− 1

2
ϵπ2(P

(t)
1 , t) + ϵµ2(L

(t)
1 , R

(t)
1 , t)

Such a representation leads to a cumulative score calculation of the joint distribution of all the nodes
of interest to the factor using linear addition and subtraction. We can realize from Equation 4.2
that the final score function depends on the composition of all the factors in the spatial-temporal
factor graph. While factors f ∈ F are mostly modeled implicitly by the temporal skills, the external
factors can be any arbitrary spatial constraints that ensure the satisfaction of the pre-condition of the
subsequent skills. Hence, with new additions to the set of external factors µ′ ∈ M′, one can reuse
the same temporal skills with added new spatial constraints.

Summary GFC is a new paradigm to solve complex manipulation problems using spatial-temporal
factor graphs. GFC can be divided into the following segments: (1) train individual skill factor dis-
tributions individually, without any prior knowledge or data from other skills in the library (2) create
spatial-temporal factor graph from a plan skeleton, (3) compose individual spatial and temporal fac-
tor distributions to construct a probabilistic graphical model, and (4) use the plan-level distribution
to sample plan solutions. The proposed approach is modular as the individual skill factors and con-
straints can be flexibly connected to form new graphs. GFC can connect parallel skill chains with
added spatial factors to solve coordinated manipulation problems directly at inference. Additional
detail in algorithm 1.

5 Experiment

In this section, we seek to validate the following hypotheses: (1) GFC relaxes strict temporal depen-
dency to allow spatial-temporal reasoning, performing better or on par with prior works in single-
arm long-horizon sequential manipulation tasks, (2) GFC can effectively solve unseen coordination
tasks, and (3) GFC is adept in reasoning about long-horizon action dependency while being robust
to increasing task horizons. We systematically evaluated our method on 9 long-horizon single-arm
manipulation tasks from prior works and 4 complex multi-arm coordination tasks in simulation. We
also demonstrate deploying GFC on a bimanual Franka Panda setup in the real world.

Relevant baselines and metrics: Our proposed method is based on factorized states and supports
long-horizon planning for collaborative tasks directly at inference via probabilistic chaining. In this
context, we consider prior methods based on probabilistic chaining with vectorized states (GSC [6])
and discriminative search-based approaches for solving long-horizon planning by skill chaining:
with uniform priors (Random CEM or RCEM) or learned policy priors (STAP [5]). Since all
prior works use sequential planning, we compare the performance of the proposed method on the
sequential version of the parallel skeleton.

Skill Data Collection and Skill Training We consider a finite set of parameterized skills in our
skill library. While our framework supports flexible addition of new skills to the skill library, we
choose skills appropriate for the considered tasks. The parameterization, data collection, and train-
ing method for each of the skills is described as follows:

1. Pick: Gripper picks up an object from the table and the parameters contain 6-DoF pose in
the object’s frame of reference. The skill diffusion models are trained on successful pick
actions on all the available set of objects namely lid, cube, hammer, and nail/stake.

7

2. Place: Gripper places an object at the target location and parameters contain 6-DoF pose in
the place target’s frame of reference. This skill requires specifying two set of parameters,
the target pose and the target object (e.g. box, table). The picked object is placed and
successful placements are used to train the skill diffusion model.

3. Move: Gripper reaches a target location with an object in hand and parameters contain 6-
DoF pose in the manipulator’s frame of reference within the workspace. This skill captures
the distribution of the reachable workspace of the robot. When composed with the Move

skill of the second manipulator, the combined distribution captures the common workspace.

4. ReGrasp: Gripper grasps object mid-air and the parameters contain 6-DoF pose in the
object’s frame of reference. While collecting data directly for this skill is non-trivial, we
consider that if an object is picked up with parameters q1 and moved with parameters q2,
then the object can be grasped at the workspace location defined by q2 with the ReGrasp

parameters as q1. Thus, we reuse Pick and Move data to train the skill diffusion model for
ReGrasp. While this is a design choice, with appropriate skill level data, we can train this
skill separately too.

5. Push: Gripper uses the grasped object to push away another object. The skill is motivated
from prior work [6, 5] where a hook object is used to Push blocks. The parameters of
this skill are (x, y, r, θ) such that the hook is placed at the (x, y) position on the table and
pushed by a distance r in the radial direction θ w.r.t. the origin of the manipulator. The
skill diffusion models is trained following GSC [6].

6. Pull: Gripper uses the grasped object to pull another object inwards. The skill is also mo-
tivated from prior work [6, 5] where a hook object is used to Pull blocks. The parameters
of this skill are (x, y, r, θ) such that the hook is placed at the (x, y) position on the table
and pulled by a distance r in the radial direction θ w.r.t. the origin of the manipulator. The
skill diffusion models is trained following GSC [6].

7. Strike: Gripper strikes another object with one object in hand (e.g., a hammer). As a
design choice, we do not train a skill diffusion model for this skill. Strike is primarily
used as a terminal skill. We are only concerned about the pre-condition as their effects can
be designed manually, which is similar to “subgoal skill” used in prior work. For example,
in order to satisfy the pre-condition of Strike, the hammer and nail must be aligned.
This can be satisfied in diverse configurations. However, the effect is achieved through a
deterministic motion.

8. Pour: Gripper rotates the object in hand in a pouring fashion. Similar to Strike, we use
Pour as a terminal skill too. In order to satisfy the pre-condition of Pour, the transform
between the source and target mug must belong to the family of admissible distributions.
We achieve the actual trajectory by designing a deterministic motion. With appropriate
skill level data, we can also train skill diffusion models, however, such improvement is out
of scope of this work.

Training. We train individual skill diffusion score-functions using the denoising score-
matching (DSM) loss following algorithm 2. We collect datasets of transitions observed during
the execution of a skill on an object and use them to train the score networks. The dataset size varies
according to the difficulty and diversity of a skill’s execution on a particular object. For example, we
need 100 successful Pick parameters for training the skill to pick the hammer and 300 successful
Move parameters to cover the whole workspace of the robot. For ReGrasp, we use both the Pick

and Move parameters.

Effect of training data coverage. If we consider “ideal” score functions and a perfect representation
of the factor distributions, a solution exists if there is an overlap between two connected factor
distributions. If such an overlapping segment does not exist, GFC will not be able to complete the
spatial-temporal plan. Hence, the training data for each factor (here temporal factors only) must be
diverse enough to ensure that the overlap exists. For example, a successful handover in Hammer
Place and Hammer Strike is not possible if the training data only consists of Pick parameters to

8

Figure 3: Evaluation tasks: (a) Hook reach: Hook is used to pull an object in the robot’s workspace
followed by other skills. (b) Constrained packing: Multiple objects must be placed on a rack
without collisions. (c) Rearrangement push: Hook is used to push objects to a desired arrangement
followed by other skills. (d) Hammer place: A hammer must be handed over to another manipulator
and placed in a target box. (e) Hammer nail: A hammer must be handed over to another manipulator
and a configuration must be achieved to strike a nail. (f) Pour cup: Cups must be brought in a
configuration that allows successful pouring from one to another.

pick the hammer from the center of the handle. Similarly, if the training data for Move does not
cover the common workspace of both robots, our proposed algorithm will be unable to complete the
coordinated plan.

Example of spatial factors. Previous work [25] considered a family of spatial factors like (left,
right, top, bottom, near and far) to model collision-free object configurations. In this work,
we are particularly interested in constructing a family of fixed transforms (FixedTransform) to
model coordinated manipulation motion. For example, in order to satisfy the pre-condition of
strike(A, B), the transform between nodes A and B must satisfy a family of transforms sig-
nifying that B must be Aligned with A to strike it. Thus the factor for strike(A, B) with
Aligned transforms HA will look like: f ≡ distance(transform(A,B),HA) ≤ permisible error
for at least one transform. In that case, the distribution of the factor will be: p(f = True|A,B) ∝
exp[−distance(transform(A,B),HA)]. The score of such a distribution can then be calculated as

ϵf (A
(t), B(t), t) = −∇A(t),B(t)distance(transform(A(t), B(t)), hA)

where hA ∈ HA is the closest transform to the current transform. The distance between transforms
is calculated as the summation of the Cartesian distance and the quaternion distance.

5.1 Key Findings

GFC relaxes strict linear dependency assumptions. We first evaluate GFC on single-manipulator
long-horizon tasks introduced by STAP [5] and also used by GSC [6]. These tasks consider manip-
ulation by reasoning about the usage of a tool (a hook) to manipulate blocks out of or into the robot
workspace (sample initial states shown in Figure 3(a-c)). Hook Reach is to hook the cube in order for
the arm to grasp and move the block to a target. Rearrangement Push requires placing a cube such
that it can be pushed beneath a rack using the tool. Constrained Packing is to place four cubes on a
constrained surface without collisions. While these tasks are originally designed to highlight linear
sequential dependencies, there are steps with indirect dependencies or independence that only GFC
can effectively model because of the factorized states. For example, in Rearrangement Push, the
picking pose of the cube should not affect the tool use steps. As shown in Table 1, we observe that
the performance of GFC is consistently on-par with the baseline for tasks with strict linear depen-
dencies such as Hook Reach and on-par or better for tasks with more complex dependency structures
such as Rearrangement Push. This validates our hypothesis that GFC effectively models sequential
dependencies, in addition to independence and skipped-step dependencies in long-horizon tasks.

GFC can solve complex coordinated manipulation tasks. Here, we aim to validate that GFC can
effectively plan and solve different types of coordinated manipulation tasks. We present results on
tasks with increased collaboration challenges. First, we consider tasks that require coordination but
can be serialized into interleaved skill chains and solved by prior skill-chaining methods. Hammer
Place, as shown in Figure S17, is for one arm to pick a hammer, hand it over to another arm for
placemement into a target box. Hammer Nail is an extension where, after hammer handover, first

9

Table 1: We show performance comparison of our method with relevant baselines on 9 single ma-
nipulator tasks and 3 two-manipulator tasks based on 100 trials for each of them. The task length
shows the relative difficulty of solving them. We also conduct evaluation on 3 extended tasks to
show robustness of GFC to task length (|T |) and efficient reasoning about interstep dependencies.
More details about the environments are provided in Supp. S4 and Supp. S5. We also provide the
breakdown of success rate per skill step in Supp. S6.

Evaluation Tasks RCEM DAF [4] STAP [5] GSC [6] GFC |T |

Single
Manipulator

Hook Reach
T1 0.54 0.32 0.88 0.84 0.82 4
T2 0.40 0.05 0.82 0.84 0.82 5
T3 0.30 0.00 0.76 0.76 0.80 5

Rearrangement
Push

T1 0.30 0.0 0.40 0.68 0.68 4
T2 0.10 0.08 0.52 0.60 0.65 6
T3 0.02 0.0 0.18 0.18 0.25 8

Constrained
Packing

T1 0.45 0.45 0.65 0.75 0.75 6
T2 0.45 0.70 0.68 1.0 1.0 6
T3 0.10 0.0 0.20 1.0 1.0 8

Bimanual
Manipulation

Hammer Place 0.05 - 0.28 0.41 0.63 8
Pour Cup 0.10 - 0.18 0.15 0.41 4

Hammer Nail 0.02 - 0.15 0.15 0.34 11
Longer Horizon Evaluation Tasks

Handback Hammer Nail 0.24 16
Handback Hammer Nail w/ auxilliary tasks 0.25 18

Handback Hammer Nail w/ extended auxilliary tasks 0.21 20

arm picks up a nail and both arms coordinate to move to positions such that the hammer’s head
is aligned with the nail for the subsequent striking step. The task is illustrated in Figure S17. As
evident from Table 1, GFC significantly outperforms all baselines in both tasks. The gap is larger in
the more challenging Hammer Nail task, which includes additional spatial and temporal constraints
such as the hammer must be re-grasped towards the tail end for the subsequent hammering step,
and the hammer and nail must be aligned for a successful strike. This demonstrates that GFC can
effectively model and resolve both spatial and temporal constraints in complex tasks.

(Pick Pot)

(Pick Pot)

(Move Pot)

(Move Pot)

Figure 4: Evaluating GFC on bi-
manual reorientation where two
arms simultaneously pick and re-
orient a pot.

GFC can zero-shot generalize to new bimanual tasks by
composing single-arm skill chains. The Pour Cup (Fig-
ure 11) task is to Pick a cup with each arm, Move to position
the two cups, and Pour the content of one into the other. GFC
can directly reuse Pick and Move skill models and adapt the
Strike skill model for the Pour step by adding a new spatial
constraint. Unlike hammer that can strike from either face of
the head, the cups can only be poured using the open top and
not the closed bottom. The constraint can be directly added as
a factor and optimized globally through guided diffusion pro-
cess. A quantitative comparison is shown in Table 1.

Finally, we consider the Bimanual Reorientation (Figure 12)
task where two arms must simultaneously operate on the same
object of interest (a pot), lift it up, and rotate it to a target re-
orientation angle (about z-axis) as illustrated in Figure 4 (Top)
for a 45-deg angle. The tasks must be solved via parallel skill
chaining with spatial constraints and hence none of the prior
baselines can be used. The factor graph (Figure 2 Right) in-
cludes a spatial fixed transform constraint between both the
arms and hence the subsequent skills operate while satisfying the constraint. Figure 4 (Bottom)
shows a detailed task success rate breakdown given different orientation goals. The spatial and
temporal challenges posed by the task are detailed further in Supp. S4.

10

Figure 5: Linear chaining has limitations. Baseline methods with linear chain assumption suffers
from performance drop when given inconsistent skill chains, where steps with sequential dependen-
cies are swapped. GFC retains high success rate using the parallel skeleton.

Figure 6: Analysis of coordination. We show that the planner is able to reason about the long-
horizon action dependency of Pick and Grasp skills. (Left) While we see that Hammer Place
can be solved by pick/grasp at head/tail and vice versa, to satisfy the precondition of Strike in
Hammer Nail, the hammer must be grasped near tail so must be picked near head. (Right) We show
orientation reasoning, where the hammer can either be grasped on the same side or the flip side.

GFC can handle independence and inconsistent skill chains. Here, we analyze how independent
steps in a sequential manipulation chain affects the performance of each method. We consider Ham-
mer Place, where the order of transporting the cube and handing over hammer is interchangeable.
As illustrated in Figure 5, we consider a consistent plan skeleton where sequentially-dependent steps
for the two main objectives, i.e., (1) opening lid then transporting cube and (2) picking, handing over,
and placing hammers, are completely sequentially. We also consider an inconsistent plan skeleton
where the steps are interleaved. We show the handover success and overall task success in Fig-
ure 5 (Right). A successful handover requires choosing compatible parameters for Pick, Regrasp,
and Move skills. While this increases the difficulty leading to lower scores in the handover suc-
cess rate, even with a minor distraction in inconsistent skeleton, the previous approaches failed to
propagate the skipped-step dependencies as evident from the task success rate.

GFC can reason about action dependency while being robust to increasing task horizons. We
observe in Figure 6 (left) that while Hammer Place task can be solved by picking or grasping on any
end of the hammer handle, Hammer Nail requires more constrained parameter sampling. Further, in
addition to the parameter selection along the handle axis, the method also samples suitable orienta-
tion (same or flip side) for grasping as shown by two examples in Figure 6 (right). We further give
an example of the capability of our method in handling longer horizon inter-step dependencies. We
particularly want to emphasize that hammering a nail not only requires extensive affordance plan-
ning to perform a handover but also requires allowing sufficient reachable workspace to align the
hammer head with the nail. For an even longer task which requires performing a second handover,
the choice of parameters for the first handover also affects the success of the second handover, thus
increasing the action-dependency horizon as illustrated in Figure 7. Our framework is able to com-
pose learned factors (diffusion models) to solve a wide variety of tasks, as long as their solutions fall

11

in the combinatorial space. We also want to emphasize that GFC is robust with respect to the task
length as shown in Table 1.

Improper
ReGrasp

Reduced reachable
workspace of the

hammer

More collision prone
second handover

Pick
Lid

Place
Lid

Pick
Cube

Place
Cube

Pick
Hammer

Move
Hammer

ReGrasp
Hammer IdleIdle

Pick
Nail

Move
Hammer

Move
Nail

Strike
Hammer

Idle

Idle Idle Move
Hammer

ReGrasp
Hammer

Idle

Place
Hammer

Pick
Lid

Place
Lid

Pick
Cube

Place
Cube

Idle Idle

Idle Idle

Pick
Lid

Place
Lid

1

1 2 3 4

2 3 4

Improper
Pick

Reduced options for
collsion-free handover

Figure 7: Inter-step dependencies. We show the steps and reasoning required to solve the Hammer
Nail task. An improper initial pick can lead to a failed or unfavorable handover which might lead
to difficulty in performing Strike and the second handover. Thus the algorithm must reason about
inter-step action dependency over longer horizons to solve the task successfully.

6 Real Robot Experiments

Kinect Azure
Camera

X

Y
Z

Figure 8: Real-World Experimental
Setup

Complete setup. We use two Franka Panda robot arms
placed in parallel to demonstrate the coordinated tasks as il-
lustrated in Figure 8. A pair of flexible Finray fingers [43] is
attached to the parallel jaw grippers. For each of the arm, we
set up a Kinect Azure camera calibrated to the origin of the
arm. We use objects like mallet (hammer), stake (tent peg,
nail), garden foam, a kitchen pot, two types of mugs and a
rack for the considered tasks. We use segment-anything [44]
and CLIP [45] to segment the objects from the RGBD image
based on text descriptions and use the segmented masks to
obtain the point clouds for the objects. Finally, we use ICP
to align the obtained and model point clouds to calculate the
transformation of the object. The procedure is done for both
cameras to obtain transforms for all the detected objects in
both robot’s frame of reference. For a particular object, we select the transform from the arm closest
to the object to get precise pose estimation (due to better depth data). We finally use the obtained
transforms to recreate the physical scene in simulation, employ GFC in simulation and rollout the
results in the real-world. While planning, the Frankx controller [46] is used to generate smooth
motion toward the desired pose.

12

Qualitative analysis. We perform qualitative analysis for all four coordinated tasks using the hard-
ware setup as shown in Figure 9,Figure 10, Figure 11 and Figure 12. We further provide detailed
videos of execution in the supplementary video.

(Pick Hammer) (ReGrasp Hammer)

(Move Hammer)

(Place Hammer)

Figure 9: Coordination task: Hammer Place The left arm must handover the hammer to the right
arm such that the hammer can be placed inside the box.

(Move Hammer)
(ReGrasp Hammer) (Pick Nail) (Move Nail)

(Move Hammer)

Figure 10: Coordination task: Hammer Nail The left arm must handover the hammer to the right
arm and pick up the nail. Both arms have to coordinate in order to move the hammer and nail to a
configuration in which the hammer can strike the nail.

(Pick Pink Mug)
(Pick Green Mug) (Move Green Mug)

(Move Pink Mug) (Pour)

Figure 11: Coordination task: Pour Cup The left arm and right arm must pick up the pink mug and
green mug respectively. Both arms have to coordinate in order to move the mugs to a configuration
in which the left arm can pour the pink mug contents into the green mug.

(Pick Pot)

(Pick Pot)

(Move Pot)

(Move Pot)

Figure 12: Coordination task: Bimanual Reorientation The left arm and right arm must pick up
the pot simultaneously. Both arms have to coordinate in order to rotate the pot to a specified target
reorientation angle. For the above illustration, the reorientation angle is 30deg.

Failure analysis. We try to analyze the reason for the failure of GFC in certain cases. A limit-
ing factor of our planning framework is that the nodes denote waypoints required to be reached for
completing the geometric execution and satisfying the goal condition without caring about the tra-
jectory between them. Since we do not explicitly provide the intuition of inverse kinematics (IK) or
collision, we assume that these properties are learned implicitly using the successful transitions in
the training data. Hence, apart from sim-to-real gap (consisting of pose-estimation error, nature of
surfaces in contact, and weight of the objects like hammer and pot), the primary reasons for failure
are: (1) sampling a pose where IK cannot be computed, i.e. unreachable. (2) The sampled pose is
not collision-free. We provide sim-to-real gap failures in the supplementary video.

13

7 Limitations and Future Directions

First, our method does not generate high-level task plans. Solving the full TAMP problem with a
unified generative model is an important future direction. Second, our method operates in a low-
dimensional state space and hence requires a state estimator. We plan to extend GFC to work with
high-dimensional observations. Finally, similar to prior works [4, 5, 6], our approach operates on
parameterized skills. Future work can explore integrating learned skills or trajectory generators for
additional generality and scalability.

8 Conclusion

We presented GFC, a learning-to-plan method for complex coordinated manipulation tasks. GFC
can flexibly represent multi-arm manipulation with one or more objects with a spatial-temporal
factor graph. During inference, GFC composes factor graphs where each factor is a diffusion model
and samples long-horizon plans with reverse denoising. GFC is shown to solve sequential and
coordinated tasks directly at inference and reason about long-horizon action dependency across
multiple temporal chains. Our framework generalizes well to unseen multiple-manipulator tasks.

References
[1] C. R. Garrett, R. Chitnis, R. Holladay, B. Kim, T. Silver, L. P. Kaelbling, and T. Lozano-Pérez.

Integrated task and motion planning. Annual review of control, robotics, and autonomous
systems, 4:265–293, 2021.

[2] P.-L. Bacon, J. Harb, and D. Precup. The option-critic architecture. In Proceedings of the AAAI
conference on artificial intelligence, volume 31, 2017.

[3] D. Driess, J.-S. Ha, and M. Toussaint. Learning to solve sequential physical reasoning prob-
lems from a scene image. The International Journal of Robotics Research, 40(12-14):1435–
1466, 2021.

[4] D. Xu, A. Mandlekar, R. Martı́n-Martı́n, Y. Zhu, S. Savarese, and L. Fei-Fei. Deep affor-
dance foresight: Planning through what can be done in the future. In 2021 IEEE International
Conference on Robotics and Automation (ICRA), pages 6206–6213. IEEE, 2021.

[5] C. Agia, T. Migimatsu, J. Wu, and J. Bohg. Taps: Task-agnostic policy sequencing. arXiv
preprint arXiv:2210.12250, 2022.

[6] U. A. Mishra, S. Xue, Y. Chen, and D. Xu. Generative skill chaining: Long-horizon skill
planning with diffusion models. In 7th Annual Conference on Robot Learning, 2023. URL
https://openreview.net/forum?id=HtJE9ly5dT.

[7] J. Liang, M. Sharma, A. LaGrassa, S. Vats, S. Saxena, and O. Kroemer. Search-based task
planning with learned skill effect models for lifelong robotic manipulation. In 2022 Interna-
tional Conference on Robotics and Automation (ICRA), pages 6351–6357. IEEE, 2022.

[8] F. Dellaert. Factor graphs: Exploiting structure in robotics. Annual Review of Control,
Robotics, and Autonomous Systems, 4:141–166, 2021.

[9] R. S. Sutton, D. Precup, and S. Singh. Between mdps and semi-mdps: A framework for tem-
poral abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181–211, 1999.

[10] D. Shah, P. Xu, Y. Lu, T. Xiao, A. Toshev, S. Levine, and B. Ichter. Value function spaces:
Skill-centric state abstractions for long-horizon reasoning. arXiv preprint arXiv:2111.03189,
2021.

[11] O. Nachum, S. S. Gu, H. Lee, and S. Levine. Data-efficient hierarchical reinforcement learning.
Advances in neural information processing systems, 31, 2018.

14

https://openreview.net/forum?id=HtJE9ly5dT

[12] W. Masson, P. Ranchod, and G. Konidaris. Reinforcement learning with parameterized actions.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 30, 2016.

[13] T. Yu, T. Xiao, A. Stone, J. Tompson, A. Brohan, S. Wang, J. Singh, C. Tan, J. Peralta,
B. Ichter, et al. Scaling robot learning with semantically imagined experience. arXiv preprint
arXiv:2302.11550, 2023.

[14] I. Kapelyukh, V. Vosylius, and E. Johns. Dall-e-bot: Introducing web-scale diffusion models
to robotics. IEEE Robotics and Automation Letters, 2023.

[15] T. Pearce, T. Rashid, A. Kanervisto, D. Bignell, M. Sun, R. Georgescu, S. V. Macua, S. Z. Tan,
I. Momennejad, K. Hofmann, et al. Imitating human behaviour with diffusion models. arXiv
preprint arXiv:2301.10677, 2023.

[16] C. Chi, S. Feng, Y. Du, Z. Xu, E. A. Cousineau, B. Burchfiel, and S. Song. Diffusion policy:
Visuomotor policy learning via action diffusion. ArXiv, abs/2303.04137, 2023.

[17] U. A. Mishra and Y. Chen. Reorientdiff: Diffusion model based reorientation for object ma-
nipulation. arXiv preprint arXiv:2303.12700, 2023.

[18] Y. Du, M. Yang, B. Dai, H. Dai, O. Nachum, J. B. Tenenbaum, D. Schuurmans, and P. Abbeel.
Learning universal policies via text-guided video generation. ArXiv, abs/2302.00111, 2023.

[19] M. Reuss, M. Li, X. Jia, and R. Lioutikov. Goal-conditioned imitation learning using score-
based diffusion policies. arXiv preprint arXiv:2304.02532, 2023.

[20] M. Reuss and R. Lioutikov. Multimodal diffusion transformer for learning from play. In 2nd
Workshop on Language and Robot Learning: Language as Grounding, 2023. URL https:

//openreview.net/forum?id=nvtxqMGpn1.

[21] M. Janner, Y. Du, J. Tenenbaum, and S. Levine. Planning with diffusion for flexible behavior
synthesis. In International Conference on Machine Learning, 2022.

[22] A. Ajay, Y. Du, A. Gupta, J. Tenenbaum, T. Jaakkola, and P. Agrawal. Is conditional generative
modeling all you need for decision-making? arXiv preprint arXiv:2211.15657, 2022.

[23] Q. Zhang, J. Song, X. Huang, Y. Chen, and M.-Y. Liu. Diffcollage: Parallel generation of large
content with diffusion models. ArXiv, abs/2303.17076, 2023.

[24] Y. Du, S. Li, and I. Mordatch. Compositional visual generation with energy based models.
Advances in Neural Information Processing Systems, 33:6637–6647, 2020.

[25] Z. Yang, J. Mao, Y. Du, J. Wu, J. B. Tenenbaum, T. Lozano-Pérez, and L. P. Kaelbling. Com-
positional diffusion-based continuous constraint solvers. arXiv preprint arXiv:2309.00966,
2023.

[26] J. Chen, J. Li, Y. Huang, C. Garrett, D. Sun, C. Fan, A. Hofmann, C. Mueller, S. Koenig, and
B. C. Williams. Cooperative task and motion planning for multi-arm assembly systems. arXiv
preprint arXiv:2203.02475, 2022.

[27] L. Nägele, A. Hoffmann, A. Schierl, and W. Reif. Legobot: Automated planning for coordi-
nated multi-robot assembly of lego structures. In 2020 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 9088–9095. IEEE, 2020.

[28] L. P. Ureche and A. Billard. Constraints extraction from asymmetrical bimanual tasks and their
use in coordinated behavior. Robotics and autonomous systems, 103:222–235, 2018.

[29] F. Amadio, A. Colomé, and C. Torras. Exploiting symmetries in reinforcement learning of
bimanual robotic tasks. IEEE Robotics and Automation Letters, 4(2):1838–1845, 2019.

15

https://openreview.net/forum?id=nvtxqMGpn1
https://openreview.net/forum?id=nvtxqMGpn1

[30] R. Chitnis, S. Tulsiani, S. Gupta, and A. Gupta. Efficient bimanual manipulation using learned
task schemas. In 2020 IEEE International Conference on Robotics and Automation (ICRA),
pages 1149–1155. IEEE, 2020.

[31] H. Ha, J. Xu, and S. Song. Learning a decentralized multi-arm motion planner. arXiv preprint
arXiv:2011.02608, 2020.

[32] J. Grannen, Y. Wu, B. Vu, and D. Sadigh. Stabilize to act: Learning to coordinate for bimanual
manipulation. In Conference on Robot Learning, pages 563–576. PMLR, 2023.

[33] A. Tung, J. Wong, A. Mandlekar, R. Martı́n-Martı́n, Y. Zhu, L. Fei-Fei, and S. Savarese. Learn-
ing multi-arm manipulation through collaborative teleoperation. In 2021 IEEE International
Conference on Robotics and Automation (ICRA), pages 9212–9219. IEEE, 2021.

[34] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole. Score-based gen-
erative modeling through stochastic differential equations. arXiv preprint arXiv:2011.13456,
2020.

[35] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. Advances in Neural
Information Processing Systems, 33:6840–6851, 2020.

[36] J. Song, C. Meng, and S. Ermon. Denoising diffusion implicit models. arXiv preprint
arXiv:2010.02502, 2020.

[37] Q. Zhang, M. Tao, and Y. Chen. gddim: Generalized denoising diffusion implicit models.
arXiv preprint arXiv:2206.05564, 2022.

[38] Q. Zhang and Y. Chen. Fast sampling of diffusion models with exponential integrator. arXiv
preprint arXiv:2204.13902, 2022.

[39] J. Ho and T. Salimans. Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598,
2022.

[40] P. Dhariwal and A. Nichol. Diffusion models beat gans on image synthesis. Advances in
Neural Information Processing Systems, 34:8780–8794, 2021.

[41] A. Lugmayr, M. Danelljan, A. Romero, F. Yu, R. Timofte, and L. Van Gool. Repaint: In-
painting using denoising diffusion probabilistic models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 11461–11471, 2022.

[42] L. P. Kaelbling and T. Lozano-Pérez. Learning composable models of parameterized skills.
In 2017 IEEE International Conference on Robotics and Automation (ICRA), pages 886–893.
IEEE, 2017.

[43] W. Crooks, G. Vukasin, M. O’Sullivan, W. Messner, and C. Rogers. Fin ray® effect inspired
soft robotic gripper: From the robosoft grand challenge toward optimization. Frontiers in
Robotics and AI, 3:70, 2016.

[44] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead,
A. C. Berg, W.-Y. Lo, P. Dollár, and R. Girshick. Segment anything. arXiv:2304.02643, 2023.

[45] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,
P. Mishkin, J. Clark, et al. Learning transferable visual models from natural language supervi-
sion. In International conference on machine learning, pages 8748–8763. PMLR, 2021.

[46] frankx. https://github.com/pantor/frankx, 2021.

[47] F. Dellaert. Factor graphs: Exploiting structure in robotics. Annu. Rev. Control. Robotics
Auton. Syst., 4:141–166, 2021. URL https://api.semanticscholar.org/CorpusID:

234254791.

16

https://github.com/pantor/frankx
https://api.semanticscholar.org/CorpusID:234254791
https://api.semanticscholar.org/CorpusID:234254791

[48] M. Toussaint. Logic-geometric programming: An optimization-based approach to combined
task and motion planning. In IJCAI, pages 1930–1936, 2015.

[49] Y. Lee, P. Huang, K. M. Jatavallabhula, A. Z. Li, F. Damken, E. Heiden, K. Smith,
D. Nowrouzezahrai, F. Ramos, and F. Shkurti. Stamp: Differentiable task and motion planning
via stein variational gradient descent. arXiv preprint arXiv:2310.01775, 2023.

[50] F. Dellaert. Factor graphs: Exploiting structure in robotics. Annual Re-
view of Control, Robotics, and Autonomous Systems, 4(1):141–166, 2021. doi:
10.1146/annurev-control-061520-010504. URL https://doi.org/10.1146/

annurev-control-061520-010504.

[51] Q. Xiao, Z. Zaidi, and M. Gombolay. Multi-camera asynchronous ball localization and trajec-
tory prediction with factor graphs and human poses. arXiv preprint arXiv:2401.17185, 2024.

[52] Y. Hao, Y. Gan, B. Yu, Q. Liu, S.-S. Liu, and Y. Zhu. Blitzcrank: Factor graph accelerator for
motion planning. In 2023 60th ACM/IEEE Design Automation Conference (DAC), pages 1–6.
IEEE, 2023.

[53] Z. Wang, C. R. Garrett, L. P. Kaelbling, and T. Lozano-Pérez. Active model learning and
diverse action sampling for task and motion planning. In 2018 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), pages 4107–4114. IEEE, 2018.

[54] Z. Wang, C. R. Garrett, L. P. Kaelbling, and T. Lozano-Pérez. Learning compositional models
of robot skills for task and motion planning. The International Journal of Robotics Research,
40(6-7):866–894, 2021.

[55] B. Kim, L. P. Kaelbling, and T. Lozano-Perez. Guiding the search in continuous state-action
spaces by learning an action sampling distribution from off-target samples. arXiv preprint
arXiv:1711.01391, 2017.

[56] X. Fang, C. R. Garrett, C. Eppner, T. Lozano-Pérez, L. P. Kaelbling, and D. Fox. Dimsam:
Diffusion models as samplers for task and motion planning under partial observability. arXiv
preprint arXiv:2306.13196, 2023.

[57] W. Peebles and S. Xie. Scalable diffusion models with transformers. arXiv preprint
arXiv:2212.09748, 2022.

17

http://dx.doi.org/10.1146/annurev-control-061520-010504
http://dx.doi.org/10.1146/annurev-control-061520-010504
https://doi.org/10.1146/annurev-control-061520-010504
https://doi.org/10.1146/annurev-control-061520-010504

S1 Main Contributions

Generative Factor Chaining (GFC) is proposed with the motivation of zero-shot motion planning
for long-horizon tasks. The goal is to use short-horizon skill transition distributions and efficiently
compose them to structure a long-horizon task-level distribution at inference. The factorized state
representation of GFC allows explicit reasoning of inter-object and skill-object interactions and
satisfying spatial constraints for coordinate manipulation. The primary contributions of GFC are as
follows:

1. A generalized task representation to formulate complex long-horizon coordination tasks
as a spatial-temporal factor graph of single-arm manipulation skill sequences connected via
spatial dependencies.

2. A compositional framework to compose short-horizon skill-level transition distributions
learned via diffusion models to represent long-horizon task-level distributions.

3. Easy plug-and-play via learning skill distributions with skill-level data only and add it
to the skill library. Any skill from the library can be plugged as temporal factors in the
spatial-temporal factor graph directly at inference for a given long-horizon task.

S2 Additional Related Works

Factor-graph representation for TAMP. The graphical abstraction of a system for understand-
ing several inter-dependencies has been used in various domains [47]. Specifically in context to
task and motion planning (TAMP), such a representation allows the decomposition of multiple
modalities (discrete and continuous variables) in the state of a system [1]. Solving together for
discrete (logical decision variables) and continuous (motion parameters) can be formulated as a Hy-
brid Constraint Satisfaction Problem (H-CSP) problem, Logic-Geometric Program (LGP) [48], and
more recently by advanced gradient descent methods [49]. By following the factor-graph represen-
tation, the state space can be represented as a Cartesian product of all the subspaces and the action
space can be compactly represented based on the modalities they affect. We particularly follow the
dynamic factor graph representation used by Garrett et al. [1] to represent all the objects and action
parameters as the variable nodes of the graph and all the kinematic inter-dependencies as the factors
of the graph.

Optimization for factor graphs. Factor graphs are graphical models where the directed and undi-
rected factors, respectively represent the joint or conditional distribution of the variable nodes con-
nected to them. Most directed factors graphs as used for localization [50, 51] are formulated into
probabilistic graphical models of hidden-markov chains and solved for the maximum a posteri-
ori (MAP) [50, 52] estimates of the unknown node variables. Particularly in motion planning, opti-
mizing for all the variable nodes is often formulated as a constraint satisfaction problem [1, 25].

Additional related works on learning for TAMP. Recent works have shown that a number of
components of a TAMP system benefit from powerful generative models. Wang et al [53, 54] use
Gaussian Processes to learn continuous-space sampler for TAMP. Similarly, Kim et al. [55] use
GANs to learn action samplers. Fang et al. [56] propose to use Diffusion Models to capture complex
distributions such as Inverse Kinematics solutions, grasps, and contact dynamics. However, they
still rely on an overarching TAMP system to consume the generated samples to perform planning.
In contrast, our method directly forms a geometric plan sampler by chaining together factor-level
diffusion models.

18

Algorithm 1: Generative Factor Chaining (GFC) Algorithm
1 Hyperparameters:
2 Number of reverse diffusion steps T

3 Inputs:
4 Pre-defined skill library Π = {π1, π2, . . . , πM}
5 Individual skill diffusion score functions ϵπ
6 Task skeleton ΦK = {π0, π1, . . . , πK}: a sequence of skills of length K
7 Scene graph sequence ΦS = {s0, s1, . . . , sK}: a sequence of scene factors of length K +

1 where sk ≡ {Vk,Fk}
8 Goal condition g ≡ {Vg,Fg}
9 Noise schedule σ

10 Initialize t = T = 1
11 Initialize ∆t

12 Initial node sequence x(T) =
[
v
(T)
k ∀ v ∈ Vk, a

(T)
πk , . . .∀ k ∈

[0,K]
]

sampled from N (0, σT I)

13 while t ≥ 0 do

14 // Score of the joint distribution of all the nodes
15 ϵΦ(v

(t)
k ∀ v ∈ Vk, a

(t)
πk , . . .∀ k ∈ [0,K], t) = 0

16 // Calculating the effective score of each node
17 ϵΦ(x

(t), t) =
∑K

k=0 ϵπk
(x(t), t) +

∑K
k=0

∑
f∈Fk

ϵf (x
(t), t) ∀x ∈

x (Computational assumption, Equation 4)

18 // Only for nodes connected with two temporal factors fx,1 and fx,2
19 ϵΦ(x

(t), t) =

ϵΦ(x
(t), t)− 1

2

[
ϵfx,1

(x(t), t) + ϵfx,2
(x(t), t)

]
(Denominator compensation, Equation 4)

20 // calculating updated noised samples for the next reverse diffusion timestep
21 x̃(t−1) = x(t) + σ̇tσtϵΦ(v

(t)
k ∀ v ∈ Vk, a

(t)
πk , . . .∀ k ∈ [0,K], t)∆t

22 t = t−∆t
23 end
24 Return x(0)

19

S3 Model Training and Architecture

Model architecture. Our transformer-based score-network architecture is derived from the Dif-
fusion Models with Transformers (DiT) [57] implementation, also open-sourced at: https://

github.com/facebookresearch/DiT. We follow a similar concept to that of patchifying an im-
age into many smaller patches, encoding each one of them using a common encoder and passing
it as a sequence to the transformer architecture with respective positional embeddings. In our case,
we consider a sequence of nodes consisting of both the object and skill parameters nodes in the
factor graph as the input sequence. Each node variable is encoded into a common dimension using
a common object node encoder and skill parameter encoder for object and skill parameter nodes
respectively. The output is decoded into their respective dimensions using similar decoder setup.

Time Embedding Positional Embedding

Temporal Skill Factor Score Function

Figure S13: Transformer-based skill diffusion model. We use the noisy pre-condition, action and
effect node value distribution at diffusion step t to obtain the corresponding ϵ during sampling.

Algorithm 2: Training skill score functions for a particular skill π
1 Inputs:
2 Pre-condition, skill parameter and Effect nodes (Vπ

pre, aπ,Vπ
effect)

3 Dataset of transitions D
4 Parameterized skill score function ϵϕ
5 Noise schedule σ
6 DSM loss weight schedule λ

7 while not converged do
8 Sample batch from dataset x(0) ∼ D
9 Sample forward diffusion timestep t ∼ [0, 1]

10 Sample Gaussian noise ϵ ∼ N (0, I)
11 Calculate noise coefficient σt

12 Calculate noisy data x(t) = x(0) + σtϵ
13 end

14 Optimize parameters ϕ using:
15 ∇ϕEt,ϵ,x(0) [λ(t)∥ϵ− ϵϕ(x(t), t)∥2]

16 Return ϵπ ≡ (Optimized) ϵϕ

Hyperparameters and computation. We consider the hyperparameters as shown in Table S2 for
building our score-network.

For the reverse sampling steps while inference, we find the best performance using 50 steps and
all results have been reported accordingly. Considering skill-object score functions with varying
input nodes leads to a loss of parallel batched inference (advantage of vectorized states) and hence,
an increase in computation time as compared to chaining with vectorized states. On an NVIDIA
RTXTM A6000 GPU, it takes 2.6 secs for the smallest horizon task Pour Cup and 6 secs for the

20

https://github.com/facebookresearch/DiT
https://github.com/facebookresearch/DiT

Table S2: Hyperparameters for Score-Network with Transformer Backbone

Hyper-parameter Value
Hidden Dimension 128
Number of Blocks 2
Number of Heads 2

MLP Ratio 2
Dropout Probability 0.1

Number of Input Channels Varies (3-11)
Number of Output Channels Varies (3-11)

longest horizon task Hammer Nail to give 10 candidate node variable values. These candidates are
sorted based on their extent of goal-condition satisfaction and the top 5 are selected to calculate the
success performance.

21

S4 More Details on Evaluation Tasks

S4.1 Hammer Nail

Task Description: Given a scene with three boxes, a hammer in placed in one of the box covered
by a lid as shown in Figure S14. There is a nail on the table. Only left arm can reach the lid, hammer
and the nail. The task objective is to strike the nail by the hammer within a provided region. There
is a cube in one of the boxes, picking and placing it are task-irrelevant distractions.

Left: Pick Lid
Right: Pick Cube

Left: Place Lid
Right: Place Cube

Left: Pick Hammer
Right: Idle

Left: Move Hammer
Right: ReGrasp Hammer

Left: Pick Nail
Right: Idle

Left: Move Nail
Right: Move Hammer

Left: Idle
Right: Strike Hammer

Figure S14: Hammer Nail. The illustration shows the Hammer Nail task. A successful solution to
this task must complete a successful handover and coordinate to align the hammer and the nail to
conduct a successful strike.

What it takes to solve? From a superficial symbolic analysis, the task can be completed if the
left arm can handover the hammer to the right arm, left arm can pick up the nail to take it to the
admissible region and the right arm can strike the nail by the hammer. However, the following
challenges exist:

1. Hammer must be picked up and moved at a location such that the right arm can re-grasp it
for a successful handover.

2. The handover must allow the right arm to satisfy the pre-condition of strike i.e. the right
arm must grasp the hammer away from the head, hence the left arm must reason and pick
it up by grasping close to head.

3. The re-grasp pose will affect the region where the hammer head can be reached. The
left arm must reason about the hammer head’s reachability to move the nail such that the
hammer and nail can be aligned.

Why is this challenging? All the above reasonings are interdependent and the effect of the initial
pick pose can be seen at multiple stages of the task. This makes the task challenging as the plans
fails:

1. if the initial pick pose fails to reason about handover requirements.

2. if the nail move target pose fails to satisfy the reachability of the hammer-head, which
actually depends on the handover.

Failure cases: The failures in the proposed method occur in the following situations:

1. Method failure: when it predicts in-feasible poses (where IK cannot be computed) or which
does not satisfy the pre-condition of the next skill.

2. Trajectory planning failure: If IK can be computed for current and target poses but no
collision-free trajectory can be computed (via pybullet-planning cite). This is expected as
GFC only solves for high-level skill transitions.

3. Simulation failure: While executing Pick skill, sometimes the contact vectors are noisy
and hence leads to pick-up failures.

S4.2 Bimanual Pot Reorientation

Task Description: Given a pot on a table, the task is to reorient the pot to some target orientation
angle (along z-axis) using two manipulators as shown in Figure S16. It is worth noting that we have

22

Hammer
Place Hammer Nail

Hammer
Place Hammer Nail

Figure S15: Handover variations. The hammer handover can be done in multiple ways, four of
which are shown above. While placement of the hammer in the box for Hammer Place task can
be done by re-grasping the hammer anywhere, for hammer strike in Hammer Nail, the hammer is
encouraged to be regrasped near the tail of the handle.

Pick and Move skills for individual manipulators such that we know where the pot can be grasped
and the reachable workspace of the manipulator.

(Pick Pot)

(Pick Pot)

(Move Pot)

(Move Pot)

Figure S16: Bimanual Pot Reorientation. The task is to coordinate planning strategies to grasp a
pot using two manipulators and rotate it to a target reorientation angle. The task must be done with
only single-manipulator data.

What it takes to solve? This particular task can be completed if:

1. we find pick poses for both the manipulators.

2. we find feasible move poses in the workspace that satisfies the target orientation.

3. we ensure that the relative transform between two gripper poses while picking and in the
predicted move target poses is the same, because the grasp poses relative to the pot cannot
change while moving.

Why is this challenging? The task is challenging because the algorithm must decide the initial pick
pose by considering sequential and parallel dependencies:

1. the same pick pose relative to the pot must exist for the target reorientation angle

2. the move pose for both manipulators must satisfy both the workspace reachability for indi-
vidual manipulators and also have the same fixed transform as the pick poses.

Failure cases: The failures in the proposed method occur in the following situations:

1. Method failure: when it predicts in-feasible poses (where IK cannot be computed) or which
does not satisfy the fixed transform condition.

2. Trajectory planning failure: If IK can be computed for current and target poses but no
collision-free trajectory can be computed (via pybullet-planning cite). This is expected as
GFC only solves for high-level skill transitions.

3. Simulation failure: While executing Pick skill, sometimes the contact vectors are noisy
and hence lead to pick-up failures.

23

S5 Extending Hammer Nail task to longer horizons

In order to evaluate the extensive long-horizon planning capabilities of our proposed algorithm,
we have further extended the Hammer Nail task to longer horizons as shown in Figure S17. The
extended tasks particularly emphasize adding a second handover such that the hammer is handed
back to the left arm after a successful hammer strike.

Figure S17: Extension of Hammer Nail task. We have added three new extensions to the Hammer
Nail task. All of the new tasks focus on handling a second handover. The nature of the first handover
adds further constraints into possible ways to perform the second handover. Further, we add task-
irrelevant skills in between the plan skeleton to evaluate the robustness of GFC and the spatial-
temporal factor graph plan representation.

We classify the failure cases as:

• Type 1: Method failure i.e. when the proposed algorithm fails to find suitable target param-
eters.

• Type 2: Trajectory planning failure i.e. no collision-free trajectory can be computed be-
tween two suitable poses.

• Type 3: Simulation failure i.e. when simulator fails to detect suitable contacts.

24

Table S3: Failure breakdown and task success analysis of hammer nail task and its extensions with
two handovers (based on 100 trials)

Task Task Horizon Type 1
failure

Type 2
failure

Type 3
failure

Task
Success

Hammer Nail 11 42 14 10 34
Extended Hammer Nail v1 16 43 28 5 24
Extended Hammer Nail v2 18 44 21 10 25
Extended Hammer Nail v3 20 41 25 13 21

Now, we show the failure breakdown and task success for all the considered Hammer Nail task and
their extensions in Table S3. While we see a drop in success rates by adding a second handover to the
vanilla Hammer Nail task, GFC proved to be robust for all other task-irrelevant skills in the chain.
The task success of all “two handover” variants is similar even with an increasing task horizon.

25

S6 Justifying success rates with breakdowns

We elaborate on the failure and success breakdown for the vanilla Hammer Nail task in Table S4.
Revisiting the failure categories, we classify the failure cases as:

• Type 1: Method failure i.e. when the proposed algorithm fails to find suitable target param-
eters.

• Type 2: Trajectory planning failure i.e. no collision-free trajectory can be computed be-
tween two suitable poses.

• Type 3: Simulation failure i.e. when simulator fails to detect suitable contacts.

Table S4: Failure breakdown and task success analysis per skill-step of hammer nail task (based on
100 trials)

Skill.No. Skills Type 1
failure

Type 2
failure

Type 3
failure

Accu.
Success

1 Pick Lid 5 0 0 95
2 Place Lid 0 0 0 95
3 Pick Cube 0 0 0 95
4 Place Cube 6 0 0 89
5 Pick Hammer 3 0 2 84

6-7 Move Hammer - Regrasp Hammer 8 6 0 70
8 Pick Nail 4 0 8 58

9-10 Move Nail - Move Hammer 11 8 0 39
11 Hammer Strike 5 0 0 34

We also elaborate on the failure and success breakdown for the bimanual reorientation task in Ta-
ble S5. It is worth to be noted that the skills are executed in parallel and the serialized representation
of the skill sequence is shown only as a part of the analysis.

Table S5: Failure breakdown and task success analysis per skill step of bimanual pot reorientation
(based on 100 trials)

Skill.No. Skills Type 1
failure

Type 2
failure

Type 3
failure

Accu.
Success

1 Grasp Pot Left 13 0 4 83
2 Grasp Pot Right 12 0 3 68

3-4 Move Pot Left - Move Pot Right 13 12 0 53

We further continue the analysis for all the two handover extensions of the Hammer Nail task,
namely for Extended Hammer Nail v1 in Table S6, for Extended Hammer Nail v2 in Table S7,
and for Extended Hammer Nail v3 in Table S8. We primarily note the accumulative success at the
first handover, coordination for the hammer Strike, and the second handover. With an increasing
task horizon, the proposed approach is invariant to task-irrelevant distractions and maintains similar
success.

26

Table S6: Failure breakdown and task success analysis per skill-step of hammer nail task extension
v1 with two handovers (based on 100 trials)

Skill.No. Skills Type 1
failure

Type 2
failure

Type 3
failure

Accu.
Success

1 Pick Lid 4 0 0 96
2 Place Lid 0 0 0 96
3 Pick Cube 0 0 0 96
4 Place Cube 5 0 0 91
5 Pick Hammer 4 0 2 85

6-7 Move Hammer - Regrasp Hammer 11 13 0 61
8 Pick Nail 3 0 3 55

9-10 Move Nail - Move Hammer 7 9 0 39
11 Hammer Strike 3 0 0 36

12-13 Move Hammer - Regrasp Hammer 4 6 0 26
14 Place Hammer 0 0 0 26
15 Pick Lid 2 0 0 24
16 Place Lid 0 0 0 24

Table S7: Failure breakdown and task success analysis per skill-step of hammer nail task extension
v2 with two handovers and some task-irrelevant skills (based on 100 trials)

Skill No. Skills Type 1
failure

Type 2
failure

Type 3
failure

Accu.
Success

1 Pick Lid 4 0 0 96
2 Place Lid 0 0 0 96
3 Pick cube 0 0 0 96
4 Place Cube 4 0 0 92
5 Pick Hammer 5 0 2 85

6-7 Move Hammer - Regrasp Hammer 12 14 0 59
8 Pick Nail 2 0 1 56

9-10 Move Nail - Move Hammer 4 0 7 45
11 Hammer Strike 1 0 0 44
12 Pick Lid 3 0 0 41
13 Place Lid 0 0 0 41

14-15 Move Hammer - Regrasp Hammer 6 7 0 28
16 Place Hammer 0 0 0 28
17 Pick Lid 3 0 0 25
18 Place Lid 0 0 0 25

27

Table S8: Failure breakdown and task success analysis per skill-step of hammer nail task extension
v3 with two handovers and many task-irrelevant skills (based on 100 trials)

Skill No. Skills Type 1
failure

Type 2
failure

Type 3
failure

Accu.
Success

1 Pick Lid 5 0 0 95
2 Place Lid 0 0 0 95
3 Pick cube 0 0 2 93
4 Place Cube 4 0 0 89
5 Pick Hammer 3 0 2 84

6-7 Move Hammer - Regrasp Hammer 4 8 0 72
8 Pick Nail 3 0 6 63

9-10 Move Nail - Move Hammer 7 9 0 47
11 Hammer Strike 5 0 0 42
12 Pick Lid 1 0 2 39
13 Place Lid 0 0 0 39

14-15 Move Hammer - Regrasp Hammer 5 8 0 26
16 Pick cube 0 0 0 26
17 Place Cube 1 0 0 25
18 Place Hammer 3 0 0 22
19 Pick Lid 0 0 1 21
20 Place Lid 0 0 0 21

28

	Introduction
	Related Work
	Background
	Method
	Representing States, Skills, and Plans in Factor Graphs
	Generative Factor Chaining

	Experiment
	Key Findings

	Real Robot Experiments
	Limitations and Future Directions
	Conclusion
	Main Contributions
	Additional Related Works
	Model Training and Architecture
	More Details on Evaluation Tasks
	Hammer Nail
	Bimanual Pot Reorientation

	Extending Hammer Nail task to longer horizons
	Justifying success rates with breakdowns

